Featured Post

THIS IS WHAT I DO

Barbed wire | Rescue | THIS IS WHAT I DO checking barbed wire in my own time. volunteer.

ROBOT BAT WING GIVES LESSONS IN FLIGHT


BROWN (US) — A robotic bat wing is offering insight into the dynamics of flight that could ultimately be used to design small flapping aircraft.

The robot, which mimics the wing shape and motion of the lesser dog-faced fruit bat, is designed to flap while attached to a force transducer in a wind tunnel. As the lifelike wing flaps, the force transducer records the aerodynamic forces generated by the moving wing.

By measuring the power output of the three servo motors that control the robot’s seven movable joints, researchers can evaluate the energy required to execute wing movements.

The robot can match the basic flight parameters of bats, producing enough thrust to overcome drag and enough lift to carry the weight of the model species.
The faux flapper generates data that could never be collected directly from live animals, says graduate student Joseph Bahlman, who led the project. Bats can’t fly when connected to instruments that record aerodynamic forces directly, so that isn’t an option—and bats don’t take requests.

“We can’t ask a bat to flap at a frequency of eight hertz then raise it to nine hertz so we can see what difference that makes. They don’t really cooperate that way.”

But the model does exactly what the researchers want it to do. They can control each of its movement capabilities—kinematic parameters—individually. That way they can adjust one parameter while keeping the rest constant to isolate the effects.

“We can answer questions like, ‘Does increasing wing beat frequency improve lift and what’s the energetic cost of doing that?'” Bahlman says. “We can directly measure the relationship between these kinematic parameters, aerodynamic forces, and energetics.”

Detailed experimental results from the robot will be described in future research papers, but this first paper, published in Bioinspiration and Biomimetics, includes some preliminary results from a few case studies.

It’s all about lift

One experiment looked at the aerodynamic effects of wing folding. Bats and some birds fold their wings back during the upstroke. Previous research has found that folding helps bats save energy, but how folding affects aerodynamic forces wasn’t clear. Testing with the robot wing shows that folding is all about lift.

In a flapping animal, positive lift is generated by the downstroke, but some of that lift is undone by the subsequent upstroke, which generates negative lift. By running trials with and without wing folding, the robot showed that folding the wing on the upstroke dramatically decreases that negative lift, increasing net lift by 50 percent.

Bat wings are complex things. They span most of the length of a bat’s body, from shoulder to foot. They are supported and moved by two arm bones and five finger-like digits. Over those bones is a super-elastic skin that can stretch up to 400 percent without tearing.

The eight-inch robot mimics that anatomy with plastic bones carefully fabricated on a 3D printer to match proportions of a real bat. The skin is made of a silicone elastomer. The joints are actuated by servo motors that pull on tendon-like cables, which in turn pull on the joints.

Flapping fundamentals

The robot doesn’t quite match the complexity of a real bat’s wing, which has 25 joints and 34 degrees of freedom. An exact simulation isn’t feasible given today’s technology and wouldn’t be desirable anyway, Bahlman says.

Part of why the model is useful is that it distills bat flapping down to five fundamental parameters: flapping frequency, flapping amplitude, the angle of the flap relative to the ground, the amount of time used for the downstroke, and the extent to which the wings can fold back.

Experimental data aside, Bahlman says there were many lessons learned just in building the robot and getting it to work properly. “We learned a lot about how bats work from trying to duplicate them and having things go wrong,” he says.

During testing, for example, the tongue and groove joint used for the robot’s elbow broke repeatedly. The forces on the wing would spread open the groove, and eventually break it open. Bahlman eventually wrapped steel cable around the joint to keep it intact, similar to the way ligaments hold joints together in real animals.

Bat elbows

The fact that the elbow was a characteristic weak point in the robot might help to explain the musculature of elbows in real bats. Bats have a large set of muscles at the elbow that are not positioned to flex the joint. In humans, these muscles are used in the motion that helps us turn our palms up or down. Bats can’t make that motion, however, so the fact that these muscles are so large was something of a mystery.

Bahlman’s experience with the robot suggests these muscles may be adapted to resist bending in a direction that would break the joint open.

The wing membrane provided more lessons. It often tore at the leading edge, prompting Bahlman to reinforce that spot with elastic threads. The fix ended up looking a lot like the tendon and muscle that reinforce leading edges in bats, underscoring how important those structures are.

Now that the model is operational, Bahlman has lots of plans for it.

“The next step is to start playing with the materials,” he says. “We’d like to try different wing materials, different amounts of flexibility on the bones, looking to see if there are beneficial tradeoffs in these material properties.”

The research was funded by the US Air Force Office of Scientific Research and the National Science Foundation.

Source: Brown University


COMMENTS

BLOGGER
Name

Articles,51,Audio,23,Backyard,24,Barbed Wire,35,Bat Art,56,Bat Books,94,Bat Box,27,Bat Clothing,16,Bat Issues,642,Bat Stamps,1,Bats,4,Bats for Children,39,Bats for the Home,70,Electrocution,9,Events,39,info on bats,643,Jackie Sparrow,26,Microbats,469,Misc,121,Netting,40,Newsletter,5,Promoting,152,Rehab,92,Rehab 2011,7,Rehab 2012,25,Rehab 2013,15,Rehab 2014,6,Rehab 2015,108,Rehab 2016,136,Rehab 2017,73,Rehab 2018,29,Rehab 2019,2,Release Cage,2,RESCUE,74,Rescue 2011,1,Rescue 2012,7,RESCUE 2013,18,RESCUE 2014,8,RESCUE 2015,25,Rescue 2016,20,RESCUE 2017,16,Rescue 2018,10,Rescue 2019,6,Rob Mies,11,Shooting,2,Vegetation,27,Video,399,Virus,128,WebSites-Bat,45,
ltr
item
BatsRule!: ROBOT BAT WING GIVES LESSONS IN FLIGHT
ROBOT BAT WING GIVES LESSONS IN FLIGHT
ROBOT BAT WING GIVES LESSONS IN FLIGHT
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj9HeK_4asq2BH4CpZWUWenNb56EgzdYw3J_HlIsw8IVOZKa1qkxOtXV_7TYNYvT_Tglka67FRLYPq8MC9r5qjdGzU_PRHJHhFjPCKaA_lR9Ti93D1Q6O-q1a744sIIkqU34vynpPxYag0/s1600/ROBOT+BAT+WING+GIVES+LESSONS+IN+FLIGHT.jpg
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj9HeK_4asq2BH4CpZWUWenNb56EgzdYw3J_HlIsw8IVOZKa1qkxOtXV_7TYNYvT_Tglka67FRLYPq8MC9r5qjdGzU_PRHJHhFjPCKaA_lR9Ti93D1Q6O-q1a744sIIkqU34vynpPxYag0/s72-c/ROBOT+BAT+WING+GIVES+LESSONS+IN+FLIGHT.jpg
BatsRule!
http://batsrule-helpsavewildlife.blogspot.com/2016/03/robot-bat-wing-gives-lessons-in-flight.html
http://batsrule-helpsavewildlife.blogspot.com/
http://batsrule-helpsavewildlife.blogspot.com/
http://batsrule-helpsavewildlife.blogspot.com/2016/03/robot-bat-wing-gives-lessons-in-flight.html
true
4238281482117672351
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED STEP 1: Share to a social network STEP 2: Click the link on your social network Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy